Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21889, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536002

RESUMO

Brunner syndrome is a disorder characterized by intellectual disability and impulsive, aggressive behavior associated with deficient function of the monoamine oxidase A (MAO-A) enzyme. These symptoms (along with particularly high serotonin levels) have been reported in patients with two missense variants in MAO-A (p.R45W and p.E446K). Herein, we report molecular simulations of the rate-limiting step of MAO-A-catalyzed serotonin degradation for these variants. We found that the R45W mutation causes a 6000-fold slowdown of enzymatic function, whereas the E446K mutation causes a 450-fold reduction of serotonin degradation rate, both of which are practically equivalent to a gene knockout. In addition, we thoroughly compared the influence of enzyme electrostatics on the catalytic function of both the wild type MAO-A and the p.R45W variant relative to the wild type enzyme, revealing that the mutation represents a significant electrostatic perturbation that contributes to the barrier increase. Understanding genetic disorders is closely linked to understanding the associated chemical mechanisms, and our research represents a novel attempt to bridge the gap between clinical genetics and the underlying chemical physics.


Assuntos
Deficiência Intelectual , Mutação Puntual , Humanos , Deficiência Intelectual/genética , Serotonina/metabolismo , Monoaminoxidase/genética
2.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235246

RESUMO

Monoamine oxidases (MAOs) are an important group of enzymes involved in the degradation of neurotransmitters and their imbalanced mode of action may lead to the development of various neuropsychiatric or neurodegenerative disorders. In this work, we report the results of an in-depth computational study in which we performed a static and a dynamic analysis of a series of substituted ß-carboline natural products, found mainly in roasted coffee and tobacco smoke, that bind to the active site of the MAO-A isoform. By applying molecular docking in conjunction with structure-based pharmacophores and molecular dynamics simulations coupled with dynamic pharmacophores, we extensively investigated the geometric aspects of MAO-A binding. To gain insight into the energetics of binding, we used the linear interaction energy (LIE) method and determined the key anchors that allow productive ß-carboline binding to MAO-A. The results presented herein could be applied in the rational structure-based design and optimization of ß-carbolines towards preclinical candidates that would target the MAO-A enzyme and would be applicable especially in the treatment of mental disorders such as depression.


Assuntos
Inibidores da Monoaminoxidase , Poluição por Fumaça de Tabaco , Carbolinas/farmacologia , Café , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Relação Estrutura-Atividade
3.
Phys Chem Chem Phys ; 23(46): 26459-26467, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806105

RESUMO

The origin of the immense catalytic power of enzymes remains one of the biggest unresolved questions in biochemistry, with electrostatics being one of the main contenders. Herein, we report results that not only confirm that electrostatics is the driving force behind enzyme catalysis, but also that it is capable of tuning subtle differences in the catalytic performance between structurally similar enzymes, as demonstrated using the example of isoenzymes, monoamine oxidases A and B. Using our own computationally efficient multiscale model [A. Prah, et al., ACS Catal., 2019, 9, 1231] we analyzed the rate-limiting step of the reaction between phenylethylamine and both isoenzymes and deduced that the electrostatic environment provided by isoenzyme B has a perceivably higher catalytic influence on all the considered parameters of the reaction (energy barrier, charge transfer, dipole moment, and HOMO-LUMO gap). This is in full agreement with the available experimental kinetic data and with our own simulations of the reaction in question. In-depth analysis of individual amino acid contributions of both isoenzymes to the barrier (based on the interaction between the electric field provided by the enzyme and the dipole moment of the reacting moiety) shows that the majority of the difference between the isoenzymes can be attributed to a small number of sizable differences between the aligned amino acid pairs, whereas in most of the pairs the difference in contribution to the barrier is vanishingly small. These results suggest that electrostatics largely controls the substrate selectivity of enzymes and validates our approach as being capable of discerning fine nuances in the selectivity of structurally related isoenzymes.


Assuntos
Teoria da Densidade Funcional , Monoaminoxidase/metabolismo , Biocatálise , Isoenzimas/química , Isoenzimas/metabolismo , Monoaminoxidase/química , Eletricidade Estática
4.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858935

RESUMO

Monoamine oxidases (MAOs) catalyze the degradation of a very broad range of biogenic and dietary amines including many neurotransmitters in the brain, whose imbalance is extensively linked with the biochemical pathology of various neurological disorders, and are, accordingly, used as primary pharmacological targets to treat these debilitating cognitive diseases. Still, despite this practical significance, the precise molecular mechanism underlying the irreversible MAO inhibition with clinically used propargylamine inhibitors rasagiline and selegiline is still not unambiguously determined, which hinders the rational design of improved inhibitors devoid of side effects current drugs are experiencing. To address this challenge, we present empirical valence bond QM/MM simulations of the rate-limiting step of the MAO inhibition involving the hydride anion transfer from the inhibitor α-carbon onto the N5 atom of the flavin adenin dinucleotide (FAD) cofactor. The proposed mechanism is strongly supported by the obtained free energy profiles, which confirm a higher reactivity of selegiline over rasagiline, while the calculated difference in the activation Gibbs energies of ΔΔG‡ = 3.1 kcal mol-1 is found to be in very good agreement with that from the measured literature kinact values that predict a 1.7 kcal mol-1 higher selegiline reactivity. Given the similarity with the hydride transfer mechanism during the MAO catalytic activity, these results verify that both rasagiline and selegiline are mechanism-based irreversible inhibitors and offer guidelines in designing new and improved inhibitors, which are all clinically employed in treating a variety of neuropsychiatric and neurodegenerative conditions.


Assuntos
Indanos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Selegilina/farmacologia , Domínio Catalítico/efeitos dos fármacos , Simulação por Computador , Transferência de Energia , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Indanos/química , Modelos Moleculares , Estrutura Molecular , Monoaminoxidase/química , Inibidores da Monoaminoxidase/química , Conformação Proteica , Selegilina/química
5.
J Phys Chem B ; 124(38): 8259-8265, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32845149

RESUMO

The enzyme-catalyzed degradation of the biogenic amine serotonin is an essential regulatory mechanism of its level in the human organism. In particular, monoamine oxidase A (MAO A) is an important flavoenzyme involved in the metabolism of monoamine neurotransmitters. Despite extensive research efforts, neither the catalytic nor the inhibition mechanisms of MAO enzymes are currently fully understood. In this article, we present the quantum mechanics/molecular mechanics simulation of the rate-limiting step for the serotonin decomposition, which consists of hydride transfer from the serotonin methylene group to the N5 atom of the flavin moiety. Free-energy profiles of the reaction were computed by the empirical valence bond method. Apart from the enzymatic environment, the reference reaction in the gas phase was also simulated, facilitating the estimation of the catalytic effect of the enzyme. The calculated barrier for the enzyme-catalyzed reaction of 14.82 ± 0.81 kcal mol-1 is in good agreement with the experimental value of 16.0 kcal mol-1, which provides strong evidence for the validity of the proposed hydride-transfer mechanism. Together with additional experimental and computational work, the results presented herein contribute to a deeper understanding of the catalytic mechanism of MAO A and flavoenzymes in general, and in the long run, they should pave the way toward applications in neuropsychiatry.


Assuntos
Monoaminoxidase , Serotonina , Catálise , Flavinas , Humanos , Simulação de Dinâmica Molecular , Monoaminoxidase/metabolismo
6.
Phys Chem Chem Phys ; 22(13): 6838-6847, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32191250

RESUMO

The kinetic isotope effect (KIE) is arguably the most established experimental observable reflecting nuclear quantum effects in enzymatic reactions. The role of nuclear quantum effects in enzymes is rather intriguing and has long been a source of profound investigations. Herein, we present a computational study of monoamine oxidase A (MAO A) enzyme and its substrate phenylethylamine, focusing on the impact of nuclear quantum effects on the reaction free energy barrier. Two distinct schemes of quantization of nuclear motion were used, one being the established Quantum Classical Path (QCP) approach, and the other our own code for quantum treatment along the selected nuclear coordinate (hydrogen transfer coordinate) which reasonably mimics the reaction coordinate. In excellent agreement with the experimental value of 8.5 ± 0.3, H/D KIE was computed to 8.66, corresponding to the D-H barrier difference of 1.28 kcal mol-1. The magnitude of KIE implies that nuclear quantum effects probably have only a minor role in the reaction, which is in accordance with the features of potentials computed along the reaction coordinate and with the pertinent energy levels and wavefunctions. The computed H/D KIE for the same reaction in aqueous solution and in the gas phase was fairly similar to the one in the enzyme, suggesting that the role of tunneling in the catalytic function of MAO A is insignificant. The agreement between the computed and observed KIE supported by analysis of nuclear quantum effects implicitly validates the assumed hydride transfer reaction mechanism.


Assuntos
Simulação por Computador , Monoaminoxidase/metabolismo , Fenetilaminas/metabolismo , Catálise , Isótopos/química , Cinética , Teoria Quântica
7.
Molecules ; 24(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795294

RESUMO

Monoamine oxidase A (MAO A) is a well-known enzyme responsible for the oxidative deamination of several important monoaminergic neurotransmitters. The rate-limiting step of amine decomposition is hydride anion transfer from the substrate α-CH2 group to the N5 atom of the flavin cofactor moiety. In this work, we focus on MAO A-catalyzed benzylamine decomposition in order to elucidate nuclear quantum effects through the calculation of the hydrogen/deuterium (H/D) kinetic isotope effect. The rate-limiting step of the reaction was simulated using a multiscale approach at the empirical valence bond (EVB) level. We applied path integral quantization using the quantum classical path method (QCP) for the substrate benzylamine as well as the MAO cofactor flavin adenine dinucleotide. The calculated H/D kinetic isotope effect of 6.5 ± 1.4 is in reasonable agreement with the available experimental values.


Assuntos
Benzilaminas/química , Deutério/química , Hidrogênio/química , Monoaminoxidase/química , Algoritmos , Catálise , Cinética , Modelos Moleculares , Modelos Teóricos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...